Twisted motivic Chern class and stable envelopes

نویسندگان

چکیده

We present a definition of twisted motivic Chern classes for singular pairs (X,Δ) consisting space X and Q-Cartier divisor containing the singularities X. The is mixture construction previously defined by Brasselet-Schürmann-Yokura with multiplier ideals. are limits elliptic Borisov-Libgober. show that suitable choice Δ satisfy axioms stable envelopes in K-theory. Our an extension results proven first author fundamental slope.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Jets, Motivic Measure and Orbifold Cohomology

We introduce the notion of twisted jets. For a DeligneMumford stack X of finite type over C, a twisted ∞-jet on X is a representable morphism D → X such that D is a smooth DeligneMumford stack with the coarse moduli space SpecC[[t]]. We study the motivic measure on the space of the twisted ∞-jets on a smooth Deligne-Mumford stack. As an application, we prove that two birational minimal models w...

متن کامل

Twisted Jet, Motivic Measure and Orbifold Cohomology

We introduce the notion of twisted jet. For a DeligneMumford stack X of finite type over an algebraically closed field k, a twisted ∞-jet on X is a representable morphism D → X such that D is a smooth Deligne-Mumford stack with the coarse moduli space Spec k[[t]]. We study the motivic measure on the space of the twisted ∞-jets on a smooth Deligne-Mumford stack. As an application, we prove that ...

متن کامل

Specialization of Motivic Hodge-chern Classes

In this paper we give a proof of the fact, that the motivic Hodge-Chern class transformation MHCy and Hirzebruch class transformation MHTy∗ for mixed Hodge modules and strictly specializable filtered D-modules commute with specialization in the algebraic and in a suitable complex analytic context. Here specialization in the Hodgeand D-module context means the corresponding nearby cycles defined...

متن کامل

Motivic Cohomology, Localized Chern Classes, and Local Terms

Let c : C → X×X be a correspondence with C and X quasi-projective schemes over an algebraically closed field k. We show that if u` : c ∗ 1Q` → c2Q` is an action defined by the localized Chern classes of a c2-perfect complex of vector bundles on C, where ` is a prime invertible in k, then the local terms of u` are given by the class of an algebraic cycle independent of `. We also prove some rela...

متن کامل

Galois Equivariance and Stable Motivic Homotopy Theory

For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and η (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108374